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Abstract
For a macroscopic liquid droplet, we applied the fluid mechanics to predict its
dynamic spreading where the energies associated with volume are dominant
(e.g. Shikhmurzaev 1997 J. Fluid Mech. 334 211). When the droplet size is
reduced to the sub-millimetre level, the surface energy becomes the dominant
factor. If the droplet size is further reduced to the micrometre or sub-micrometre
level, the line tension should be included in our theoretical formulation for
predicting droplet spreading. In the present paper, we extend the non-
equilibrium thermodynamics (Gao et al 2000 Acta Mater. 48 863–74) to
describe the micrometre or nanometre size droplet spreading on a solid substrate
with the line tension effect. Discussion of the stable and unstable equilibrium
states is made based on the thermodynamic force expression.

1. Introduction

From the continuum physics point of view, the total energy of condensed matter consists of
two parts, namely, the energy associated with the volume and the energy associated with
surfaces. When a liquid droplet is large in volume, its dynamic spreading process on a solid
surface is characterized by conversion between its gravity potential energy and the kinetic
energy of the liquid flow. Rigorous mathematical description is made possible via Navier–
Stokes equations (for example, [1]). When the droplet under concern is at the sub-millimetre
level, the surface energy dominates the evolution process. Let us have a numerical sense by
considering a spherical shaped water droplet. Its volume associated energy can be represented
by its gravity potential energy. Its kinematics energy of flow is converted from the potential
energy. Therefore, they should be of the same order of magnitude.

EV = mg R = ρV g R = 4π

3
R4ρg. (1.1)

The surface associated energy is estimated as

ES = 4π R2γ. (1.2)
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Figure 1. A liquid droplet spreading on a solid.

If we take the physical constants for water, γ = 72 × 10−3 J m−2 and ρ = 1000 kg m−3, and
equate the two energies to have the value of R at which the surface energy is on a par with the
volume energy, we have

R =
√

3γ

ρg
≈ 4 mm. (1.3)

In other words, when the droplet size is much smaller than 4 mm in radius, the motion is
driven by conversion among the surface energies. The conventional fluid mechanics based on
Navier–Stokes equations is not capable of describing the droplet evolution. A non-equilibrium
thermodynamics framework seems feasible for describing this sub-millimetre droplet spreading
process [2]. If the droplet size is further reduced, the so-called line tension should be included
in the description of the spreading. Let us make an estimation based on the geometric
configuration of figure 1. Assuming a semi-spherical shaped water droplet with its contact line
on the solid substrate, we take the surface energy as 72 mJ m−2. The line tension value is not
very well documented in the literature. Its experimental values are reported in the range of a few
orders of magnitude (from 10−10 to 10−6 N; see [3]). By setting the surface and line energies
on a par, we find the radius of the liquid droplet is in the range of 1 nm–10 µm. We have a
dilemma here: on the one hand, the above dimensional analysis needs the droplet to be small
so that the line tension prevails in comparison with the surface tension. On the other hand,
we have a ‘lower bound’ of the size of the droplet for meaningful application of continuum
physics. In the present study, we assume that the line tension is not at the lower end of its range
and the droplet dimension is in the range of continuum physics; otherwise, a discrete approach
(say, molecular dynamics) should be employed in study of the present problem.

The line tension effect has been recognized by the researchers in the field of colloid science
(for example, [4]). Some recent publications shed light on the research interests in this field.
Avyard et al [5] extended the liquid bridging solution between two spheres with the line tension
effect. Marmur and Krasovisky [6] considered a liquid droplet on a curved solid surface with
the line tension effect. More recently, Brinkmanm et al [7] studied the stability of liquid
channels in the presence of the line tension. Although the above referenced works do not
represent a thorough review of this research area, they represent the interests in this field—the
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equilibrium state of the liquid droplet with the line tension effect. In the following sections,
we would like to turn our attention to the dynamic process of the liquid spreading via a non-
equilibrium thermodynamics framework [2, 8], with which the evolution process is directed
to lowering the total free energy of the system. Speaking of the system, it should include the
volume of the fluid, all the interfaces, and the triple point line (contact line). The free energy
should include the contributions from all these sources. However, it is noticed that the volume
contribution is negligible for the size of the droplet under consideration. In other words, the
spreading evolution is led by the surface and the line energies, rather than the gravity potential
energy.

2. Non-equilibrium thermodynamics formulation

Let us consider a vapour/liquid/solid system shown in figure 1. A liquid droplet is placed
on a smooth and horizontal solid surface with vapour/liquid, liquid/solid and vapour/solid
interfaces that conjoin at a contact line. The solid is assumed not to dissolve or react with
the liquid. The interface change and the contact line motion are considered here in terms of
thermodynamics formulation. The non-equilibrium thermodynamics requires that the system
change is the process of reducing system Gibbs free energy towards its minimum value. For the
system of the droplet, we consider the evolution of the interfaces Si j and the motion of contact
line driven by the change of the Gibbs free energy, denoted by G hereafter. The free energy
consists of the sum of the interface energies among different phases, denoted by U , and the
negative work supply W to the system by the external actions. We have

G = U − W

with

U = γLV ALV + γSV ASV + γSL ASL + τ L (2.1)

where γi j is the specific surface tension and Ai j is the area of the interface Si j between phase i
and phase j , with phases L, S and V denoting the liquid, the solid and the vapour surrounding
the liquid, respectively. The last term in equation (2.1) is the line tension effect, where τ is the
line tension and L is the length of the contact line.

From equation (2.1), the free energy change of the vapour/liquid/solid system can be
expressed by

δG = γLVδALV + γSVδASV + γSLδASL + τδL − δW. (2.2)

It is seen that the change of the free energy is due to the geometric shape change of the droplet.
As there are countless paths of the evolving processes that would reduce the free energy, the free
energy by itself is not sufficient to determine the evolution of the vapour/liquid/solid system.
We need to relate the geometric change of the liquid/vapour interface and contact line with
the thermodynamic forces acting on them. They are the so-called constitutive equations for the
evolution.

2.1. Geometric change of the interface and contact line

The area of a surface element is denoted by dA, and the length of a line element of the contact
line is denoted by dl. The unit vector normal to the vapour/liquid interface is denoted by n,
directing to the vapour phase. The sum of the two principal curvatures of SLV (indicated in
figure 1) is given by

κ = 1

R1
+ 1

R2
(2.3)



4484 H Fan

where R1 and R2 are the principal radii of curvature, taken to be positive for a convex surface.
On the one hand, associated with the virtual motion, δrn , the area of the interface SLV varies by

δALV1 =
∫ ∫

SLV

κδrn dA. (2.4)

The integral extends over the interface SLV. On the other hand, associated with the virtual
motion of the contact line, δRL, the area of the interface SLV varies by

δALV2 =
∮

L
δRL cos θ dl (2.5)

without changing of curvature in equation (2.3).
The areas of the interface SSL and SSV vary by

δASL =
∮

L
δRL dl = −δASV. (2.6)

In equation (2.5), θ is the dynamic contact angle at any point along the contact line and the
integral extends along the contact line, denoted by L. Last but not least, the change of the
contact line is given by

δL =
∮

L

δRL

RL
dl. (2.7)

During the evolution process of the contact line and the liquid/vapour interfaces, the virtual
motions of SLV at any point on the contact line must be satisfied with the following compatibility
condition:

δrn = δRL sin θ, on L .

Other constraint conditions, such as no volume change if no evaporation or condensation is
assumed, can be applied to the geometric change of the system.

2.2. Driving forces and kinetic laws

Having the aforementioned virtual motions, we can define the thermodynamic force on the
liquid/vapour interface, fS, and the force on the contact line, fL. As the free energy decreases
with respect to the virtual motions, we have [8]∮

L
fLδRL dl +

∫ ∫
SLV

fSδrn dA = −δG. (2.8)

Since the virtual motion δrn is an arbitrary function of the position on the interface SLV and
δRL is also an arbitrary function of the position on the line L, equation (2.8) uniquely defines
the quantity fS at every point on the interface SLV and fL at every point along the contact line
L. The above-defined thermodynamics force fS has a unit of stress (force/area) and fL has a
unit of surface tension (force/length). They are called driving forces of the dynamic system.

Let vL and vn
S be the actual velocity of the contact line L and the interface SLV, respectively.

Under the framework of thermodynamics, the actual velocities are taken to be functions of the
driving forces. In the present study, the velocity is assumed to be linearly proportional to the
driving force (for example, [9]), i.e.

vL = ML fL (2.9a)

vn
S = MS fS. (2.9b)

In the above equation, ML and MS are called the mobilities of the contact line and the
liquid/vapour interface SLV, respectively. These two quantities are used as phenomenological
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parameters of the system, to be determined by comparing theoretical predictions with
experimental measurements (see [10]). Since the thermodynamics requires that the evolution
leads the reduction of the free energy of the system, both ML and MS are positive.
Equations (2.9a) and (2.9b) are called the kinetic laws for the contact line and the liquid/vapour
interface. It should be noted that the kinetic laws (2.9a) and (2.9b) are linear relations and the
velocity at a point only depends on the forces at this point, namely, a local relation. In general,
the kinetic laws can be generalized to non-linear and non-local relations if the linear law fails
to give a good predication of the experimental result.

3. Motion equations and equilibrium conditions

Noting that the external work change is given by

δW =
∫ ∫

SLV

�pδrn dA, (3.1)

where �p is the pressure difference across the surface SLV, which is the so-called Laplace
pressure, we rewrite equation (2.2) as

δG =
∮

L
γSLδRL dl −

∮
L
γSVδRL dl +

∮
L
γLVδRL cos θ dl +

∮
L

τ

RL
δRL dl

+
∫ ∫

SLV

γLVκδrn dA −
∫ ∫

SLV

�pδrn dA. (3.2)

A comparison of equations (2.8) and (3.2) gives the expressions of the driving forces

fL = γSV − γSL − γLV cos θ − τ

RL
(3.3a)

and

fS = �p − γLVκ. (3.3b)

Combination of equations (2.9) and (3.3) leads to

vL = ML

(
γSV − γSL − γLV cos θ − τ

RL

)
, for contact line (3.4a)

and

vn
S = MS(�p − γLVκ), for liquid/vapour interface. (3.4b)

These nonlinear differential equations govern the motions of the contact line and the
liquid/vapour interface during the system evolution. The motions of the contact line and the
change of the interfaces depend on the solution of the set of motion equations (3.4) under
certain initial-value and boundary conditions (for example [2], where zero line tension was
considered). It is worthwhile to mention that the solution of the droplet evolution described via
the above thermodynamic frame does not involve the viscosity of the liquid which is associated
with the conventional fluid mechanics. The liquid spreading speed is controlled by the new
pair of parameters, i.e. the mobility of the surface and the contact line which are determined
experimentally [10].

At the end of the evolution process, the system reaches an equilibrium state. At that time,
the free energy of the system achieves its minimum value, the liquid/vapour interface shape
and contact line position are no longer changing anymore, the contact angle arrives at its static
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value, and the driving forces vanish. Setting fL = 0 and fS = 0 in equations (3.3) results in
the equilibrium conditions for the contact line and the interface,

γSV − γSL − γLV cos θe − τ

RL
= 0 (3.5a)

�p − γLVκ = 0. (3.5b)

Equation (3.5a) is the modified Young’s equation with the line tension effect, and
equation (3.5b) is the well known Laplace’s equation. In the equation, θe is the equilibrium
contact angle.

4. Discussions

For a full scale numerical simulation of the droplet spreading on a solid surface, readers need
to read Gao et al [2] and Suo [8] for the detailed weak statement of the problem, where no
line tension was considered (τ = 0). Here, we make a simplified numerical simulation by
assuming the droplet shape as a cap of a sphere. This assumption reduces the number of
generalized coordinates to one, i.e. the radius of the contact line. As the thermodynamics force
in equation (3.3a) includes the line tension effect, we can expect that the spreading speed is
reduced as the line tension increases. The evolution of the droplet can be simulated by

δ(RL/R∗) =
(

cos θ0 − cos θ − τ

γLV RL

)
δ(t/t0) for the contact line

and

δ(rn/R∗) = χ

(
R∗
γLV

�p − R∗κ
)

δ(t/t0) for the liquid/vapour interface,

where t0 = R∗
MLγLV

, χ = MS
R∗ ML

and θ0 is the equilibrium contact angle in the absence of the line

tension. A parameter, R∗ = 3
√

V (V is the volume of the liquid droplet), is selected for the
normalization purpose. The numerical iteration, which simulates the elevation of the droplet
shape, can be carried out, after we specify the non-dimensional parameters (t0 and χ ) and an
initial shape of the droplet (e.g. [2]).

An important issue comes up with the ‘initial values of contact angle’. Examining the
thermodynamics force acting on the contact line, equation (3.3a)

fL = γSV − γSL − γLV cos θ − τ

RL
,

we notice that the force is monotonically decreasing when the line tension term is absent. In
other words, there is only one equilibrium solution for

γLV cos θ0 = γSV − γSL. (4.1)

However, when the line tension term is included in the force equation, there are two roots
for the equilibrium condition. The equilibrium condition, equation (3.5a), with the help of
equation (4.1), is written as

cos θ0 − cos θ = τ

γLV RL
, with 0 < θ0 � π. (4.2)

The first root to equation (4.2) is the modification of the equilibrium contact angle under the
zero line tension condition, which is close to θ0; the second solution is close to θ = π .

Although the numerical solutions can be easily obtained, we prefer to have the analytical
approximated solutions which may shed more light on the problem. Having assumed that the
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R.H. S. of (4.2)

1+cosθo 
ε∗ 

 L.H.S of (4.2)  
θΙ 

π−θ0 π−θ 

ε increasing direction 

0 

θΙΙ 

Figure 2. Schematic display of the solution of equation (4.2).

droplet shape is approximated by a partial sphere, we can write the volume of the droplet in
terms of contact angle and radius of the sphere, i.e.

V = R3 F(θ) = π

6
R3(1 − cos θ)(3 sin2 θ + (1 − cos θ)2).

By noting that RL = R sin θ , we rewrite equation (4.2) as

(cos θ0 − cos θ) sin θ = ε 3
√

F(θ) (4.3)

where ε = τ

γLV
3√V

= τ
γLV R∗

is a small parameter in most cases. It is straightforward to have the

perturbed solutions as

θI = θ0 + ε 3
√

F(θ0)
/

sin2 θ0 + O(ε2) (4.4a)

θII = π − ε
3

√
4π

3
/(1 + cos θ0) + O(ε2). (4.4b)

Equation (4.4a) is a stable solution, which should be observed in experimental measurement.
Equation (4.4b) is an unstable solution, which will not be observed in the experimental test.

The final equilibrium state of the droplet depends on the initial condition. We will see the
following situations.

(1) θinitial > θII; the contact angle evolves towards π .
(2) θII > θinitial > θI; the contact angle evolves towards θI.
(3) θinitial < θI; the contact angle evolves towards θI.

It is interesting to notice that although the two solutions are obtained from the equilibrium
equation (4.3), explaining the stability of the solutions involves the dynamic process of the
droplet spreading. It is also seen that there is a critical value of ε∗ from observation of figure 2.
Equation (4.3) has no solution with ε > ε∗, which means that we can only expect the liquid
droplet in a spherical shape with contact angle of π . Widom [11] reached a similar conclusion
based on an equilibrium study (noting that the definition of the contact angle in his paper is
different from ours). With the help of the energy consideration, he drew the same conclusion
as above for the positive line tension force. It should be mentioned that his study also included
the solution and discussion of the negative line tension case, which is of great interest from
an experimental point of view. Examining our solution equation (4.4), we find that for the
negative line tension (ε < 0) the second root given by (4.4b) does not fit the physical reality
(the equilibrium contact angle must be in the range of 0 � θ � π ). In other words, there
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is only one equilibrium contact angle for negative line tension cases, which is consistent with
Widom’s figure 2. However, we would like to emphasize that the present analytical model not
only predicts the stable and unstable equilibrium contact angles, but also provides the dynamic
evolution history from the unstable towards the stable situation.
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